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[1] The fast Community Radiative Transfer Model (CRTM) has been integrated into
National Environmental Satellite Data and Information Service’s newly developed
Advanced Clear-Sky Processor for Oceans (ACSPO). CRTM is used in conjunction with
the National Centers for Environmental Prediction (NCEP) Global Forecast System
atmospheric profiles and Reynolds weekly version 2 sea surface temperatures (SST) to
simulate clear-sky brightness temperatures (BT). Model BTs are used to improve the ACSPO
clear-sky mask, monitor quality of advanced very high resolution radiometer (AVHRR)
BTs, and explore physical SST retrievals. This paper documents CRTM implementation
in ACSPO version 1 and evaluates nighttime ‘‘model minus observation’’ (M-O) BT biases
in three bands (3.7, 11, and 12 mm) of four AVHRR/3 instruments onboard NOAA-16,
NOAA-17, NOAA-18, and MetOp-A. With careful treatment of input atmospheric and
SST data, the agreement is generally good, showing only weak dependencies of M-O biases
on view zenith angle, column water vapor, and wind speed. The agreement improves if
Reynolds weekly SST is used instead of NCEP SST. Including surface reflection also
reduces the M-O bias. After all optimizations, the M-O biases are within several tenths of a
Kelvin. Consistency between different platforms is �0.1K, except for NOAA-16 channel
3B, which is biased low compared to other platforms by �0.4K. Our future plans include
extending the analyses to daytime data and exploring physical SST retrievals. Aweb-based
tool is being established to continuously monitor the M-O biases and physical SSTs. The
validation methodology employed in this paper will be used to quantitatively measure the
effect of each improvement on the M-O bias and physical SST.
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1. Introduction

[2] The new Advanced Clear-Sky Processor for Oceans
(ACSPO) developed at NESDIS will replace the heritage
Main Unit Task (MUT) system used since the early 1980s
[McClain et al., 1985; Walton et al., 1998; Ignatov et al.,
2004]. Similar to the MUT, ACSPO generates AVHRR top-
of-atmosphere (TOA) radiances over oceans, from which sea
surface temperatures (SST) and aerosol products are derived.
A major improvement in ACSPO over the MUT is the full
integration of global clear-sky AVHRR radiances with the
National Centers for Environmental Prediction Global Fore-
cast System (NCEP/GFS) atmospheric and Reynolds et al.
[2002] weekly version 2 SST fields. A fast Community

Radiative Transfer Model (CRTM) [Kleespies et al., 2004;
Han et al., 2006], developed at the NESDIS Joint Center for
Satellite Data Assimilation (JCSDA) and similar in its over-
all philosophy to the RTTOV (radiative transfer model for
TOVS) [Saunders et al., 1999, 2007], is then run with
the GFS upper air and Reynolds SST input to predict TOA
clear-sky brightness temperatures (BT) in AVHRR bands 3B
(3.7 mm), 4 (11 mm), and 5 (12 mm). Currently, the CRTM
BTs are used to perform quality control of AVHRR BTs and
to improve the ACSPO clear-sky mask.
[3] Physical SST retrievals have been demonstrated to

help improve SST retrieval [Merchant et al., 1999, 2008;
Merchant and Le Borgne, 2004] and are also being explored
in ACSPO, in addition to the regression MultiChannel SST
(MCSST) and Nonlinear SST (NLSST) retrievals preserved
in ACSPO from the MUT. Accuracy of CRTM and global
input fields is critically important for all these applications.
Careful implementation of the forward CRTM in ACSPO, in
conjunction with NCEP/GFS atmospheric and Reynolds SST
data, and validation of CRTM BTs against AVHRR BTs are
thus two major objectives of this study.
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[4] The paper is organized as follows. Section 2 briefly
introduces the CRTM and describes the NCEP/GFS atmo-
spheric and Reynolds SST data and their collocation with
AVHRR observations. Section 3 describes satellite data used
in this study. Section 4 documents the implementation of
CRTM in ACSPO and optimization through a number of
sensitivity analyses toward minimization of the M-O bias.
In particular, accurate treatment of finite GFS layers in
CRTM and using reflective (rather than black) surface model
improves the M-O statistics in all AVHRR bands and for
all platforms. Using Reynolds et al.’s [2002] weekly v.2
SST (referred to herein as the ‘‘Reynolds SST’’) rather
than NCEP GFS SST (referred below as the ‘‘NCEP SST’’)
also improves the M-O bias. The latter improvement is
most noticeable in the coastal areas. In section 5, geograph-
ical distribution of the M-O bias is analyzed and its stabil-
ity checked over a period of 1 week. In section 6, the effect
of ambient clear-sky environment on the M-O biases is
quantified, and asymptotic values of confident clear-sky
M-O biases are estimated. Section 7 summarizes the results
of this study. We conclude that, overall, the CRTM is much
faster and performs more accurately and uniformly than
MODTRAN4.2, and it can be used to start exploring physical
SST retrievals in ACSPO.

2. CRTM and NCEP/GFS Atmospheric
and Reynolds SST Inputs

2.1. CRTM

[5] In the CRTM version used in ACSPO v.1, extraterres-
trial radiation is neglected and effects of scattering in the
atmosphere omitted. Quantitative analyses of the effect of
solar reflection on global M-O biases in Ch3B, 4 and 5 are
currently underway. All analyses in this study are thus limited
to only nighttime data, when these assumptions are better
met. The radiative transfer equation used in CRTM for wide-
band sensors such as the AVHRR is written as follows:

�RðqÞ ¼ eðqÞ�BðTsÞ�tðqÞ þ �L
"ðqÞ þ ð1� eð53�ÞÞ�L#ð53�Þ�tðqÞ: ð1Þ

Sea surface emissivity, e(q), is discussed in more detail in
section 2.2 below. �R(q) is TOA radiance at sensor level; q is
view zenith angle; Ts is SST; and �B(Ts) is its Planck radiance.
Atmospheric transmittance, �t(q), and upwelling and down-
welling radiances, �L"(q) and �L#(53�), are calculated within
the CRTM.
[6] Terms in equation (1) with the overbar sign (except for

surface emissivity, which in CRTM is specified at the central
wavelength) represent band average values, i.e., convolved
with the respective sensor spectral response,F(q). Themono-
chromatic form of the radiative transfer equation is used
in any fast RTM, such as the RTTOV or CRTM, because
line-by-line calculations are computationally unaffordable
for real-time applications. Resulting errors in TOA BTs are
deemed to be small [e.g., Sherlock et al., 2003; Wan and
Dozier, 1996].
[7] The cornerstone of the CRTM is fast calculation of

atmospheric transmittances using the ‘‘compact OPTRAN,’’
which is a more accurate and computationally efficient
version of OPTRAN v.6 [McMillin et al., 2006; Han et al.,
2006]. Coefficients in the compact OPTRAN have been
derived against LBLRTM v.9.4 transmittances, which use

the MTCKD v.1.2 for water vapor continuum [Clough
et al., 2005] and HITRAN2000 with 2001 updates for lines
[Rothman et al., 2003]. The transmittance profiles are calcu-
lated within the CRTM and further integrated with the
emissions of each layer to calculate the TOA upwelling and
surface downwelling atmospheric radiances. Comparisons of
broadband BTs calculated using CRTM, and exact integra-
tion of the LBLRTM, show the root-mean-square deviations
are less than 0.1K in all AVHRR bands [Han et al., 2006].
[8] ACSPO v.1 uses CRTM ‘‘rev577,’’ which was released

on 15 May 2007. CRTM release 1.1 is currently available
(ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/), and subsequent
versions of ACSPO will be upgraded accordingly. However,
there is no significant change in the spectroscopy within the
infrared windows between the rev577 and release 1.1, so that
all results of this study obtained with rev577 should be rep-
resentative of release 1.1.

2.2. Surface Emissivity

[9] CRTM users can select one of the two default emis-
sivity models included in the CRTM: black surface, e
 1, or
wind speed�dependent emissivity of Wu and Smith [1997],
eWS. In the current CRTM version, emissivity is specified at
the central wavelength of a band. CRTM can be also run with
a user-defined emissivity model, eU, such as the Sherlock
[1999], Masuda [2006], or Fresnel’s model tested by Dash
and Ignatov [2008].
[10] The surface emission term in equation (1) is calculated

from the angle-dependent emissivity (CRTM default or user
chosen), whereas for calculation of the surface reflectance
term, emissivity at a fixed 53� direction is used, in conjunc-
tion with the downwelling atmospheric radiance from the
same direction. This formulation was preserved by the
CRTMTeam from their earlier work over land surface, which
is customarily assumed to be Lambertian [Han et al., 2006].
Over ocean, however, the downwelling direction should be
specified in conjunction with the view direction [e.g., Watts
et al., 1996; Sherlock, 1999]. Also, compared to the mono-
chromatic emissivity used in the current CRTM version,
using band-average emissivity is more consistent with the
band-average nature of the CRTM [e.g., Wan and Dozier,
1996; Sherlock et al., 2003]. Work is underway with the
CRTM team to reconcile these inconsistencies. Results will
be reported elsewhere.

2.3. NCEP/GFS Data

[11] Input to CRTM constitutes atmospheric profiles of
pressure, air temperature, geopotential height, relative hu-
midity (RH), and ozone specified from the NCEP/GFS files
(www.emc.ncep.noaa.gov/modelinfo/). Several surface vari-
ables are also reported in GFS, including surface and air
temperatures and pressure, as well as u and v components of
wind speed (from which the near-surface wind speed used in
this study is calculated as V =

p
(u2 + v2)). GFS data are

generated 4 times a day for different forecast times at 1�
latitude-longitude spatial resolution at 26 levels of atmo-
spheric pressure and temperature from 1000 to 10 mbar, at
20 levels of relative humility (RH) from 1000 to 100 mbar,
and at 6 levels of O3 from 100 to 10 mbar. All of this
information is used in ACSPO, where GFS fields are linearly
interpolated in time tomatchAVHRRobservation time, using
two 12-h forecasts separated by 6 h. These time-interpolated
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fields are then used to simulate CRTM BTs at 1� resolution,
which in turn are interpolated in space to match the AVHRR
pixel.
[12] CRTM input should be specified in atmospheric

layers, whereas GFS profiles are specified at levels, which
bracket the corresponding layers. This level-to-layer conver-
sion is left to CRTM users. Section 4.1 explores sensitivity to
a particular implementation. In addition to H2O and O3,
CRTM also accounts for the absorption due to five minor
and uniformly mixed gases (CO2, O2, CO, CH4, and N2O)
whose concentrations in the compact OPTRAN are set to
globally nonvariable.

2.4. Reynolds Weekly v.2 SST

[13] Another input to CRTM is SST. The GFS files contain
a ‘‘surface temperature’’ parameter, derived from the Rey-
nolds weekly v.2 product over oceans and from land surface
temperature over land. Although Reynolds and GFS SSTs are
expected to be close, analyses in section 4 below show that
the two SSTs differ. Further analyses show that Reynolds
SST provides a more accurate input to CRTM, so it is,
therefore, used in ACSPO v.1.
[14] Reynolds SST is bulk SST, and it does not resolve

diurnal cycle. Also, during the nighttime, SST is cooler than
daily average Reynolds SST. As a result, the global modeled
BT (the ‘‘M’’) used in this study may be biased warm by
several tenths of a Kelvin [e.g., Garand, 2003; Trigo and
Viterbo, 2003].
[15] During ACSPO development, however, Reynolds

et al. [2007] daily SST has become available. This newer
product is currently being tested to replace the weekly
product, and results will be reported elsewhere.

3. Satellite Data Used in This Study

[16] In ACSPO products, CRTMBTs are reported side-by-
side with AVHRR BTs derived from counts using the
standard calibration, navigation, and quality-control infor-
mation available on Level 1b files. The view and solar zenith
angles, UTC, and latitude and longitude of the pixels are also
saved in ACSPO from L1b data along with the derived
ACSPO clear-sky mask [Petrenko et al., 2008].
[17] Data from four platforms are used in this study:

NOAA-16, NOAA-17, NOAA-18, and MetOp-A. These
satellites overpass at approximately 0430, 2130, 0200, and
2130 local time, respectively. As of the time of this writing,
only NOAA-18 and MetOp-A satellites are operational at
NESDIS, whereas NOAA-16 and NOAA-17 are kept in a
back-up mode. Nevertheless, data from all four platforms are
routinely processed and several case studies are used here.
[18] To minimize possible solar impingement on AVHRR

blackbody, only nighttime data are used in this study.
Nighttime pixels are defined as those with solar zenith angle
> 118� [Cao et al., 2001;Dash and Ignatov, 2008]. In the case
of NOAA-16, which currently flies close to the terminator,
this condition may eliminate large areas in the high latitudes
during the winter or spring seasons. However, we have opted
to be on the ‘‘safe side’’ with the data screening to ensure high
confidence in our validation results.
[19] In evaluating the results below, one should keep in

mind that the AVHRR sensor on NOAA-16 has experienced
continuous problems with scan motor. As a result, the quality

of its Level 1b data may be suboptimal during certain periods
of time. Although all quality flags available on Level 1b data
were applied in this study, the derived product may still be
affected. We have chosen to keep NOAA-16 data in the
analyses to see if they show any anomalies.

4. CRTM Implementation in ACSPO

[20] The way in which SST, atmospheric profiles, and
modeled surface emissivity are specified in CRTM affects
the simulated TOA BTs. This section discusses the CRTM
implementation in ACSPO v.1 and options to minimize the
M-O bias.

4.1. Treatment of Water Vapor in CRTM

[21] CRTM users need to convert GFS RH values reported
at levels to the effective mass-mixing ratios of water vapor in
layers. The mass-mixing ratio of water vapor, g, is propor-
tional to RH and to the saturation mixing ratio of water vapor
as follows:

g ¼ RH
MWh2o

MWdry

esðTÞ
P � esðTÞ

: ð2Þ

Here,MWh2o andMWdry are molecular weights of water and
dry air, respectively, P is atmospheric pressure, and es(T) is
saturation vapor pressure (SVP), which is a function of air
temperature, T. Uncertainty in the layer g may arise from the
calculation of the SVP at levels, or from the way the level g
are converted to layer g.
[22] In earlier SVP calculations, Goff and Gratch’s [1946]

empirical formulation was customarily used. Later, Flatau
et al. [1992] fit a polynomial to the newer measurements by
Guildner et al. [1976]. Table 1 compares the two SVP values
for several air temperatures. The largest difference, up to 14%,
takes place at low air temperatures. Since those are typically
associated with low water vapor content, the effect on the
TOA BTs is only 0.02K, globally. Nevertheless, the SVP
formulation by Guildner and Flatau was adopted in ACSPO.
[23] Conversion of level g to layer g results in larger errors.

In the initial ACSPO implementation (based on clouds from
AVHRR extended, CLAVR-x (A. Heidinger, personal com-
munication, 2006)), layer temperatures were first calculated

Table 1. Comparison of SVP Value Between the Goff and Gratch

[1946] Approach and Polynomial Fit of Data From Flatau et al.

[1992]

T
(K)

Flatau et al. [1992]
(hPa)

Goff and Gratch [1946]
(hPa)

(F-G)/F
(%)

188 5.21E-04 4.49E-04 13.7929
198 2.48E-03 2.30E-03 7.6028
208 1.00E-02 9.64E-03 3.9012
218 3.53E-02 3.46E-02 2.0725
228 0.1105 0.1092 1.1922
238 0.3108 0.3089 0.593
248 0.7975 0.7954 0.2603
258 1.8898 1.8867 0.1647
268 4.1718 4.1640 0.1859
278 8.6408 8.6224 0.2134
288 16.9019 16.8690 0.1948
298 31.4110 31.3700 0.1305
308 55.7698 55.7408 0.0519
318 95.0715 95.0689 0.0027
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as an average of the two levels’ temperatures and used to
calculate the SVP and subsequently the mass-mixing ratio in
a layer using equation (2). Figure 1a shows an example of the
M-O biases in Ch5 for 1 week of data in April 2006 and for
three platforms (NOAA-16 through NOAA-18) using this
initial implementation. The bias strongly depends upon
column water vapor with amplitude of �3K. A more appro-
priate approach is to first calculate the SVP and mass-mixing
ratio at each level, and then calculate the layer’s effective
water vapor content, assuming its exponential decay with the
height. Figure 1b shows that as a result, the M-O bias is
reduced by a factor of 2 (from�3K to�1.5K). This dramatic
sensitivity is caused by the strong exponential dependence of
the SVP on temperature shown in Table 1. A similar effect is
also observed in Ch3b and Ch4, although of a smaller mag-
nitude due to more transparent atmosphere here.
[24] We thus conclude that treatment of NCEP/GFS pro-

files in CRTM significantly affects the M-O bias and adopt
the second approach in ACSPO. It is expected that for higher
vertical resolution atmospheric profiles, such as the European
Center for Medium-Range Weather Forecasting (ECMWF)
data, RTM accuracy would be less sensitive to level-to-layer
conversion uncertainty.

4.2. Downscaling 1� CRTM Calculations to AVHRR
Pixel and New Cloud Mask in ACSPO

[25] Sensitivity analyses in Figure 1 were done with the
initial code based on CLAVR-x. In ACSPO v.1, the clear-sky
mask was improved [Petrenko et al., 2008]. Also, an inter-
polation procedure was added to scale CRTM calculations
performed in 1� GFS boxes down to 4-km or 1-km AVHRR
pixel resolution. This procedure is based on expansion of
modeled BTs into Taylor’s array with respect to SSTand slant
path atmospheric optical depth and subsequent interpolation
of the components of this simplified ‘‘Jacobian’’ in geograph-
ical coordinates.
[26] Figure 2a shows the M-O biases in AVHRR Ch5 for

four platforms using ACSPO v.1 for 1 week in February
2007. Black surface model was used for consistency with
Figure 1. Although the CRTM model remained unchanged
from Figure 1, the pixel-level modeled BT (‘‘M’’) has
changed owing to the way the CRTM calculations performed
at 1� resolution are now downscaled to AVHRR pixels. The
AVHRR clear-sky radiances (‘‘O’’) have also changed, owing

to the new ACSPO clear-sky mask. As a result, the depen-
dence of the M-O bias in Figure 2a has further reduced
from Figure 1b, especially at low (W < 2g cm�2) and high
(W > 5g cm�2) water vapors. In the remaining part of this
paper, ACSPO v.1 data are consistently used.

4.3. Surface Emissivity Model

[27] As expected, a different treatment of the GFS finite
layers affects the M-O bias proportionately more toward
higher water vapor contents. The low water vapor end remains
unchanged and biased high by �1K. A possible cause is the
black surface assumption, which affects TOA BTs progres-
sively larger toward more transparent atmospheres.
[28] Figure 2b replots theM-O biases from Figure 2a using

the wind speed�dependent surface emissivity model by Wu
and Smith [1997] that is available in CRTM. This brings the
M-O bias closer to zero and significantly reduces its ampli-
tude. The improvement is largest at low water vapors and
smallest at large water vapors.
[29] Final CRTM implementation is shown in Figure 2c

(including using a more appropriate SST as input to CRTM
discussed in section 4.4 below). The M-O bias is close to
zero at medium-to-large water vapors but it progressively
increases toward low water vapors. (This dependence cor-
roborates well with the zonal trends (shown in Figure 8 in
section 5.1) and SST dependence of the M-O bias (not
shown).) At least part of this high M-O bias may be due to
the effect of SSTon emissivity [Newman et al., 2005], which
has not been taken into account in the Wu-Smith emissivity
model. According to Newman et al. [2005], including SST
dependence would decrease emissivity at low temperatures
and reduce the modeled surface BTs by several tenths of a
Kelvin in AVHRR Ch5 spectral interval. Work is currently
underway with the CRTM Team to improve the emissivity
modeling for SST.
[30] Figure 3, similar in its structure to Figure 2, shows

angular dependence of the M-O bias in Ch3B. The strong
view-angle-dependent biases seen in Figure 3a for a black
surface emissivity model are largely removed if a CRTM
emissivity model is used instead (Figure 3b).

4.4. Using Reynolds Instead of NCEP SST

[31] The global (1�)2 resolution SST field in the initial
implementation of ACSPO was specified from the GFS

Figure 1. The meanM-O biases in AVHRR Ch5 onboard three NOAA platforms as a function of column
water vapor for 1 week of global data from 20 to 26 April 2006. (a) Initial implementation and (b) corrected
implementation. Data binned at DW = 0.5 g/cm2.
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Figure 2. Same as in Figure 1 but for different parameters as CRTM input. (a) Black surface and NCEP
SST, (b) CRTM emissivity and NCEP SST, (c) CRTM emissivity and Reynolds SST, and (d) corresponding
histogram of W. Global data are for four platforms for 1 week from 16 to 22 February 2007.

Figure 3. Same as in Figure 2 but as a function of view zenith angle for Ch3B. Data binned atDq = 10�.
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parameter called ‘‘surface temperature,’’ which presumably
comes from Reynolds et al.’s [2002] weekly v.2 SST over
ocean and from land surface temperature over land. In
ACSPO v.1, (1�)2 SST data are used as input to CRTM
and then interpolated to match the satellite pixel. Whether
a gridded value came from a land or sea pixel could be, in
principle, determined by the land-sea mask. However, we
have chosen to implement an optional additional input of
Reynolds et al.’s [2002] weekly v.2 SST in ACSPO and
directly compare the two results.
[32] Figures 2c and 3c show that using weekly v.2

Reynolds SST in place of NCEP SST has little effect on the
M-O bias. The only exception is in Figure 2c at the low end
of water vapor content (<1.5g/cm2), where the M-O bias
increases. To gain insight into this relapse, global maps of the
M-O biases are shown in the top two panels of Figure 4 for
NOAA-18 Ch3B, Figure 4a corresponding to Reynolds SST
and Figure 4b to NCEP SST as input to CRTM. The most
striking difference is in the coastal areas, where the M-O bias
is unrealistically low in the case of NCEP SST, and its
variability (not shown) is unrealistically high. Additional
analyses have shown that the GFS column water vapor
content and wind speed are also biased low in the coastal
areas. If those areas are removed from the analyses, then the
water vapor and wind speed dependencies of the M-O biases
calculated with Reynolds weekly v.2 and GFS SST inputs
look much closer (not shown; see also discussion below in
section 4.6). Interestingly, the differences between the NCEP
and Reynolds weekly v.2 SSTs are not only limited to the
coastal areas, as attested by Figure 4c. These observations
have been reported to the NCEP GFS Team. As of the time
of this writing, it remains unknown to us what causes the
difference between the NCEP and Reynolds SSTs in the
open ocean.

4.5. Global Histograms of the M-O Bias

[33] Figure 5 systematically compares the M-O biases for
all bands and platforms, when NCEP and Reynolds SSTs are
used as input to CRTM. Using Reynolds SST increases the
global M-O biases by�0.1K, in all AVHRR bands, bringing
them to�+0.2K in Ch3b and�+0.3...+0.4K in Ch4 and Ch5.
Increased bias may not necessarily be ‘‘bad news’’ in this
particular case, as it leaves a wider margin for the future
incorporation of aerosols in the RTM, adjusting SST for
diurnal cycle and using skin SST instead of current bulk.
Also, we anticipate that the ongoing improvements in
ACSPO nighttime clear-sky mask may bring the ‘‘O’’ up,
thus further reducing the M-O bias.
[34] For SST analyses, it is critically important that the

M-O biases in different bands are spectrally consistent. The
fact that the margin is smallest in Ch3B, which is most sen-
sitive to errors in SST and to aerosols, suggests that CRTM
may need band-specific adjustments to its spectroscopy to
simultaneously reconcile all three AVHRR bands.
[35] The analyses thus far have concentrated on the global

mean M-O bias. Another important measure of CRTM-
AVHRR consistency is its standard deviation (Stddev).
Figure 5 shows that Stddevs become consistently smaller
when Reynolds SST is used, for all bands and platforms. The
difference is very significant and equivalent to cutting the
M-O variance in half. For instance, in MetOp-A Ch3B,
the balance is (0.79K)2� (0.56K)2 = (0.56K)2. The decreased

Figure 4. Global distribution of the M-O bias in NOAA-
18-Ch3B, and corresponding Reynolds - NCEP SST differ-
ences for 1 day: 18 February 2007. (a) Reynolds SST,
(b) NCEP SST used as input to CRTM, and (c) Reynolds
minus NCEP SST. Note red contouring around the coastal
lines in Figures 4b and 4c.

D06112 LIANG ET AL.: CRTM IMPLEMENTATION/VALIDATION IN ACSPO

6 of 13

D06112



Stddev provides strong evidence that Reynolds SST is a
superior predictor for the CRTM, compared to GFS SST.
[36] Cross-platform consistency is generally within 0.1K

in all bands, indicating that the sensor calibrations and
spectral response functions are largely consistent across four
sensors. The only glaring exception is NOAA16 Ch3B.
In a similar validation study of MODTRAN4.2 [Dash and
Ignatov, 2008], the same anomaly was observed and thought
to be due to a possible shift of its spectral response function.
This atypical NOAA16 Ch3B result will be shown in the
remainder of this paper but will not be discussed any further.
On the other hand, the MetOp-A Ch3B, which was out-of-
family in MODTRAN analyses, is now in-family, which is
consistent with similar analyses byMerchant et al. [2008]. As
of the time of this writing, the reason for this inconsistency
is not clear to us. Analyses of the NOAA-16 and MetOp-A
anomalies continue and their results will be reported elsewhere.

4.6. Using Skin Instead of Bulk SST and the Possible
Effects of Aerosols

[37] Radiance measured by satellite sensor is sensitive to
skin SST, whereas Reynolds weekly v.2 SST is tuned against
in situ SSTs and, therefore, is a bulk SST product. In absence
of diurnal thermocline at night, Donlon et al. [2002] suggest
an empirical bulk-to-skin SST conversion using a wind
speed�dependent parameterization of the form Tskin =
Tbulk � [0.14 + 0.30 � exp(�V/3.7)], where V is the near-
surface wind speed. Skin-bulk difference may offset some of
the warmM-O biases observed in Figure 5 (�+0.2K in Ch3B
and �+0.3...+0.4K in Ch4 and Ch5).
[38] The amplitude of the wind speed dependence in

Figure 6c (corresponding to skin SST) slightly increases
from Figure 6b (corresponding to bulk SST) because the
bulk-to-skin conversion suppresses the low wind speed
domain most and affects the large wind speed domain least.

Figure 5. Histograms of the M-O bias for 1 week of global data from 16 to 22 February 2007. (a, b, c)
NCEP SST and (d, e, f) Reynolds SST are used as input to CRTM. For Reynolds SST, all histograms are
consistently narrower (Std Dev smaller) than for NCEP SST.
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The shape of the dependence may be a complex combination
of large-scale correlations between water vapor, SST, and
wind speed, which in turn all have pronounced zonal distri-
butions. This shape is not analyzed here.
[39] As expected, the bulk-to-skin conversion reduces the

M-O bias and brings it closer to zero while keeping slightly
positive. The reduction is �0.17K in Ch3B and somewhat
smaller in Ch4 and Ch5 (not shown), owing to a more opaque
atmospheric transmission in these bands. On the basis of
some prior MODTRAN analyses, including background
maritime tropospheric aerosols may account for another
0.1–0.2K, depending upon band [e.g., Dash and Ignatov,
2008]. Margins in Ch4 and Ch5 are about right for that
correction, whereas Ch3B would be overcorrected if aerosols
are included. Adjustments to the daily mean Reynolds SST to
account for diurnal cycle may contribute another several
tenths of a Kelvin offset. The CRTM thus appears to more
accurately represent AVHRR data in the longwave IR win-
dow, whereas in the shortwave window, it may be slightly
underestimated. There is also some evidence that Ch3B may
be less sensitive to the Saharan dust and to the aged volcanic
stratospheric aerosols than Ch4 and Ch5 [Merchant et al.,
1999, 2006].
[40] Figure 6a also shows wind speed dependence of the

M-O bias in case of NCEP SST input. The amplitude of the
effect is about twice as large as in the case of Reynolds SST
shown in Figure 6b. As discussed in section 4.4 above, this
result is due to the fact that the GFS SST and wind speed

fields are both biased in the coastal areas and that these biases
are correlated.

4.7. CRTM Settings Adopted in ACSPO Version 1

[41] On the basis of the sensitivity analyses in this sec-
tion, ACSPO v.1 is set to use a consistent treatment of finite
layers in NCEP/GFS atmospheric profiles, CRTM emissivity
model, and Reynolds weekly v.2 SST instead of NCEP SST
as input to CRTM in ACSPO v.1.
[42] Using daily Reynolds SST [Reynolds et al., 2007] is

being evaluated for the future versions of ACSPO. Convert-
ing bulk to skin SST using GFS near-surface wind speed, and
adjusting it for the effect of diurnal cycle (e.g., using clima-
tological data similar to those of Kennedy et al. [2007]), are
also being considered.

5. M-O Bias Distribution in Space and Time

[43] This section evaluates geographical distribution of the
M-O bias in the ACSPO v.1 product using one day and
checks for temporal stability using 1 week of global data.

5.1. Geographical Distribution of the M-O Bias

[44] Figure 7 shows global distribution of the M-O biases
in three bands of MetOp-A on 18 February 2007, and Figure 8
shows their zonal dependence and the corresponding histo-
grams. Biases are smallest in the tropics of the Southern
Hemisphere (0�–30�S) and increase toward higher latitudes.

Figure 6. The M-O bias in Ch3B as a function of wind speed for 1 week of global data from 9 to 15 June
2007 for different SSTs as CRTM input. (a) NCEP SST, (b) Reynolds SST, (c) Skin SST, and (d) corre-
sponding histogram of wind speed. Data binned at DV = 1 m/s. The skin SST is obtained from Reynolds
bulk SST by applying a wind speed�dependent correction by Donlon et al. [2002].
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Cross-platform consistency remains good in all three bands
of all three platforms, in the full latitudinal range.
[45] These trends are likely due to the specifics of the zonal

distributions of different geophysical factors such as ambient
cloud, water vapor, and wind speed (see Figures 2 and 6,
discussed earlier, and Figure 10 in section 6). Note that bias
in the Northern Hemisphere is larger than in the Southern

Hemisphere.Merchant et al. [2008] attribute this asymmetry
to differences in aerosol loading between the hemispheres.
Future work will be aimed at minimizing artificial depen-
dencies of the M-O bias on these factors, which should
also minimize the M-O bias and improve its geographical
uniformity.

5.2. Time Series of the M-O Bias

[46] Figure 9 shows a time series of the mean bias and its
standard deviation for individual days from 16 to 22 February
2007. The empirical data points show less noise in Ch3B than
in Ch4 and Ch5. A more stable CRTM performance in Ch3B
is likely due to the smaller water vapor absorption in this
band compared to the other two bands. The biases are�0.2K
in Ch3B and �0.3–0.4K in Ch4 and Ch5, and respective
Stddevs are 0.6, 0.7, and 0.8K. These numbers are very
similar to the respective cumulative weekly statistics shown
in Figure 5. All statistics thus appear stable and reproducible
from day to day, at least during the week analyzed here.
[47] Work is currently underway to establish long-term

monitoring of the M-O biases similarly to how they are
monitored by the Numerical Weather Prediction Centers [e.g.,
Garand, 2003; Köpken et al., 2004; Munro et al., 2004] and
to publish results on the Web at www.star.nesdis.noaa.gov/
sod/sst/micros/ in near-real time. Such monitoring is helpful
to evaluate the long-term performance of CRTM, and also
assess stability and cross-platform consistency of the clear-
sky BTs over oceans.

6. Effect of Ambient Clear-Sky Environment
on the M-O Bias

[48] A part of the warm M-O bias may come from a cold
bias in the ‘‘O,’’ which could be due to the contribution from
the ambient and/or residual cloud in AVHRR BTs. The vicin-
ity of cloud may be surrounded by elevated aerosols and
water vapor (the so-called ‘‘cloud halos’’), which may also be
favored for cloud formation. Such transient states are difficult
to detect using a threshold-based ACSPO clear-sky mask and
they are not modeled in CRTM (see discussion and references
in work by Dash and Ignatov [2008]).
[49] Here, we attempt to quantify the effect of ambient and/

or residual cloud on the M-O bias, with the objective to
validate the ‘‘true’’ performance of the CRTM in which this
effect was not modeled. For that, the M-O dependencies are
fit as a function of the number of clear-sky ocean pixels
surrounding the central pixel (NCSOP [cf. e.g., Trigo and
Viterbo, 2003; Köpken et al., 2004; Munro et al., 2004])
within a 25-by-25 sliding window. This size of the window
was chosen empirically to approximately match the 1�
latitude-by-longitude area used by Dash and Ignatov
[2008]. Note that some 25-by-25 windows may include
coast, land, ice, or some invalid pixels. No attempt was made
here to differentiate between those boundary pixels and
cloud. For the analyses in this section, only NCSOP was
used as a predictor.
[50] Figure 10 shows the effect of NCSOP on the mean

M-O biases in three channels of four sensors and corre-
sponding NCSOP histograms. An exponential model was
selected to approximate these curves as follows:

DT ¼ Aþ B* expð�C*NCSOPÞ: ð3Þ

Figure 7. Global distribution of M-O biases in three
AVHRR bands of MetOp-A on 18 February 2007.
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The fit equation approximates the M-O bias data well.
The fit parameters, A, B, and C, are also listed in Figure 10.
Two asymptotic regimes are of interest: (1) confident clear
sky (NCSOP ! 1), described by the parameter A, and
(2) entire cloud (NCSOP ! 0), described by the (A + B)
aggregate, respectively. Parameters B and C represent the
amplitude of the M-O bias and its dropoff rate with NCSOP,
respectively.
[51] From the entire cloud to confident clear sky, the

mean M-O biases change significantly. The amplitude
(coefficient B) is �0.5K in Ch3B, �0.6–0.7K in Ch4, and
�0.7–0.8K in Ch5. The curves drop off sharper in Ch4 and
Ch5 than in Ch3B (coefficient C). These observations may
be helpful to guide future improvements to ACSPO clear-sky
mask.
[52] The curves stabilize themselves at large enough

NCSOP (suggesting that a large fraction of the ACSPO data
is affected by ambient and residual cloud) and approach an
asymptotic clear-sky value characterized by the parameter A.
The A parameter is expected to best characterize the ‘‘true’’
accuracy of CRTM, which currently does not model the
effects of ambient and residual cloud. The asymptotic M-O
biases are �0K in Ch3B and �0.1–0.2K in Ch4 and Ch5.
Recall that aerosols were not included in CRTM and bulk
SST is used, which was also not corrected for the effects of
diurnal cycle. Once these factors are included, theM-O biases
will likely become negative suggesting that absorption in

CRTM is probably somewhat overestimated. Analyses are
underway to quantify these effects more accurately.

7. Discussion and Conclusions

[53] CRTMwas integrated into ACSPO, where it is used in
conjunction with NCEP GFS upper air and Reynolds weekly
v.2 SST fields to predict TOA AVHRR BTs. With careful
treatment of input data in the CRTM, an accurate implemen-
tation was obtained and the M-O biases were minimized.
[54] Overall, CRTM is an accurate model that closely

reproduces AVHRR BTs in Ch3B, Ch4, and Ch5 for
NOAA-16�18 and MetOp-A. The CRTM M-O biases ap-
pear much smaller and more spectrally consistent than those
of MODTRAN4.2 [cf.Merchant and Le Borgne, 2004;Dash
and Ignatov, 2008]. TheM-O biases appear stable in time and
show good cross-platform consistency in all cases except for
Ch3B on NOAA-16, which shows an anomalous behavior.
Note that MetOp-A Ch3B, which was out of family in
the MODTRAN-AVHRR validation analysis by Dash and
Ignatov [2008], is now in-family and shows no apparent
anomaly [cf. Merchant et al., 2008]. These NOAA-16
irregularities and MetOp-A inconsistencies are currently
being investigated.
[55] The M-O bias was evaluated as a function of main

factors affecting theM-O bias and accuracy of SST retrievals.
Residual dependencies on the column water vapor, wind

Figure 8. Zonal distribution of the M-O bias and histogram of latitude. Data binned atD8 = 10�. Global
data are for 1 week from 16 to 22 February 2007.
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speed, sensor zenith angle, latitude, and ambient clear-sky
environment have been detected. This is not fully unexpected
because the validationwas performed in the full global retrieval
domain, and no data were withheld from analyses. Also, no
bias correction was attempted for observed BTs, in contrast to
customary practice in numerical assimilation of satellite data
[e.g., Uddstrom and McMillin, 1994; Garand, 2003; Köpken
et al., 2004; Munro et al., 2004; Merchant et al., 2008].
[56] The global mean M-O biases are on the order of �0.2

and �0.35K in Ch3B and Ch4/5, respectively. If asymptotic
clear-sky conditions are considered, then these biases are
reduced to only 0 to 0.2K. Including aerosols, using skin SST,
and correcting it for the effects of diurnal cycle will likely
make the M-O biases negative in all AVHRR bands. Anal-
yses continue to incorporate all these factors and better
quantify the ‘‘true’’ M-O bias.

[57] The current analyses suggest that the CRTM imple-
mentation in ACSPO in conjunction with GFS upper air and
Reynolds SST inputs is already accurate enough to be used in
the improved ACSPO cloud mask [Petrenko et al., 2008;
Dybbroe et al., 2005; Merchant et al., 2005] and physical
SST retrievals [e.g., Merchant et al., 2008]. To that end,
tangent-linear, adjoint, and K-Matrix models that are criti-
cally important for the inversions are now available in CRTM
[Han et al., 2006]. Adding aerosol and reflected solar
radiation in the CRTM will be required for accurate physical
SST retrievals, especially during daytime. We also consider
testing the CRTMwith the data from other numerical weather
prediction (NWP) atmospheric models, such as the ECMWF
data and NCEP Reanalysis. Daily Reynolds SST [Reynolds
et al., 2007] is also being explored.We also plan to extend our
validation analyses to the daytime data. Each improvement in

Figure 9. Time series of the (a, b, c) mean M-O bias and (d, e, f) standard deviation for 1 week of global
data from 16 to 22 February 2007.
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the forward model will be quantitatively evaluated using the
methodology described in this paper.
[58] The developed system will be applied to the MSG/

SEVIRI radiances, to prepare for theGOES-R/ABI. Resources
permitting, it will also be testedwithMODIS radiances, to get
ready for processing the Visible and Infrared Imaging Radi-
ometer Suite (VIIRS) onboard the National Polar Orbiting
Environmental Satellite System (NPOESS).
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Assimilation of Meteosat radiance data within the 4D-Var system at
ECMWF:Data quality monitoring, bias correction, and single-cycle exper-
iments, Q. J. R. Meteorol. Soc., 130, 2293–2313, doi:10.1256/qj.02.229.

Newman, S. M., J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor
(2005), Temperature and salinity dependence of sea surface emissivity in
the thermal infrared, Q. J. R. Meteorol. Soc., 131, 2539 – 2557,
doi:10.1256/qj.04.150.

Petrenko, B., A. Heidinger, A. Ignatov, and Y. Kihai (2008), Clear-sky
mask for the AVHRR Clear-Sky Processor for Oceans, paper presented
at Ocean Sciences Meeting, Am. Soc. of Limnol. and Oceanogr., Orlan-
do. Fla. (http://www.star.nesdis.noaa.gov/smcd/emb/aerosol/ignatov/
conf/2008-AGU-OSM-PetrenkoEtAl_ACSPO_CSM_Poster.pdf)

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang
(2002), An improved in situ and satellite SST analysis for climate,
J. Clim., 15, 1609–1625, doi:10.1175/1520-0442(2002)015<1609:
AIISAS>2.0.CO;2.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G.
Schlax (2007), Daily high-resolution blended analyses for sea surface
temperature, J. Clim., 20, 5473–5496, doi:10.1175/2007JCLI1824.1.

Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic data-
base: Edition of 2000 including updates through 2001, J. Quant. Spectrosc.
Radiat. Transfer, 82, 5–44.

Saunders, R., M. Matricardi, and P. Brunel (1999), An improved fast ra-
diative transfer model for assimilation of satellite radiances observations,
Q. J. R. Meteorol. Soc., 125, 1407–1425, doi:10.1256/smsqj.55614.

Saunders, R., et al. (2007), A comparison of radiative transfer models for
simulating Atmospheric Infrared Sounder (AIRS) radiance, J. Geophys.
Res., 112, D01S90, doi:10.1029/2006JD007088.

Sherlock, V. (1999), ISEM-6: Infrared surface emissivity model for RTTOV-6,
Forecast. Res. Tech. Rep. 299, 17 pp., NWPDiv., MetOffice, Exeter, U. K.

Sherlock, V., A. Collard, S. Hannon, and R. Saunders (2003), The gastro-
pod fast radiative transfer model for advanced infrared sounders and
characterization of its errors for radiance assimilation, J. Appl. Meteorol.,
42, 1731–1747, doi:10.1175/1520-0450(2003)042<1731:TGFRTM>
2.0.CO;2.

Trigo, I. F., and P. Viterbo (2003), Clear-sky window channel radiances:
A comparison between observations and the ECMWF model, J. Appl.
Meteorol., 42, 1463 – 1479, doi:10.1175/1520-0450(2003)042
<1463:CWCRAC>2.0.CO;2.

Uddstrom, M. J., and L. M. McMillin (1994), System noise in the NESDIS
TOVS forward model. Part 1: Specifications, J. Appl. Meteorol., 33,
919–938, doi:10.1175/1520-0450(1994)033<0919:SNITNT>2.0.CO;2.

Walton, C. C., W. G. Pichel, J. F. Sapper, and D. A. May (1998), The
development and operational applications of nonlinear algorithms for the
measurement of sea surface temperatures with the NOAA polar-orbiting
environmental satellites, J. Geophys. Res., 103, 27,999–28,012.

Wan, Z., and J. Dozier (1996), A generalized split-window algorithm for
retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote
Sens., 34, 892–905, doi:10.1109/36.508406.

Watts, P. D., M. R. Allen, and T. J. Nightingale (1996), Wind speed effects
on sea surface emission and reflection for the Along Track Scanning
Radiometer, J. Atmos. Oceanic Technol., 13, 126–141, doi:10.1175/
1520-0426(1996)013<0126:WSEOSS>2.0.CO;2.

Wu, X., and W. L. Smith (1997), Emissivity of rough sea surface for 8–13
um: Modeling and verification, Appl. Opt., 36, 2609–2618, doi:10.1364/
AO.36.002609.

�����������������������
A. Ignatov, Y. Kihai, and X.-M. Liang, Center for Satellite Application

and Research, NESDIS, NOAA, WWB Room 603, 5200 Auth Road, Camp
Springs, MD 20746, USA. (xingming.liang@noaa.gov)

D06112 LIANG ET AL.: CRTM IMPLEMENTATION/VALIDATION IN ACSPO

13 of 13

D06112


